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Last Lecture

Voice Conversion
• Non-disentangle-based method

• Disentangle-based method
• Instance normalization
• Quantization
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This Lecture

• Recurrent Neural Network

• Attention

• Transformers

• Pretrained Foundation Model
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Recurrent Neural Network
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Vanilla Neural 
Networks

Image Captioning Action Prediction Video Captioning Video classification 
on frame level



Recurrent Neural Network
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RNN Hidden State Update
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RNN Output Generation
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RNN: Computational Graph
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Notice: the same function and the same set of parameters (same weight matrix) are used at every time step.



Sequence to Sequence with RNNs
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During training, we use the “correct” 
token even if the model is wrong.



RNN Tradeoffs

• RNN Advantages: 
• Can process any length of the input 
• Computation for step t can (in theory) use information from many steps 

back
• Model size does not increase for longer input
• The same weights are applied on every timestep, so there is symmetry in 

how inputs are processed. 

• RNN Disadvantages: 
• Recurrent computation is slow
• In practice, difficult to access information from many steps back 
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Image Captioning using Spatial Features
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This Lecture

• Recurrent Neural Network

• Attention: the relative importance of each component in a 
sequence

• Transformers

• Pretrained Foundation Model
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Image Captioning with RNNs and Attention
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Image Captioning with RNNs and Attention
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Image Captioning with RNNs and Attention
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Attention in Image Captioning
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“query” refers to a vector used to 
calculate a corresponding context vector. 



General Attention Layer (1)
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Multiple query vectors

Attention operation is permutation invariant, so reshape.

each query creates a new, corresponding output context vector



General Attention Layer (2)
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We can add more expressivity to the 
layer by adding a different FC layer 
before each of the two steps.



Self-attention Layer
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We can calculate the query vectors 
from the input vectors, therefore, 
defining a "self-attention" layer.

No input query vectors anymore

Permutation equivariant: Self-attention layer 
doesn’t care about the orders of the inputs!



CNN with Self-Attention
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Masked self-attention layer
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Multi-head self-attention layer
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Why multi-head?



General attention versus self-attention
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This Lecture

• Recurrent Neural Network

• Attention

• Transformers

• Pretrained Foundation Model
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The Transformer encoder block
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The Transformer decoder block
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Image Captioning using Transformers
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ViTs – Vision Transformers

• Transformers from pixels to language

9/23/2024 CIS6930 Trustworthy AI Systems 28



This Lecture

• Recurrent Neural Network

• Attention

• Transformers

• Pretrained Foundation Model
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Foundation Models in Different Modalities
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• Foundation model is trained on 
large amounts of unlabeled/self-
supervised data.

• A foundation model can centralize 
the information from all the data 
from various modalities.

• This one model can then be 
adapted to a wide range of 
downstream tasks. 

https://arxiv.org/pdf/2108.07258



GPT: Generative Pre-Trained Transformers
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https://www.youtube.com/watch?v=5sLYAQS9sWQ



Other Foundation Model Designs in NLP
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https://arxiv.org/pdf/2302.09419



Other Foundation Model Designs in NLP
• Encoder-only: BERT

• Bidirectional attention, low rank attention matrix
• masked language modeling
• understanding

• Encoder-Decoder: T5, BART
• Large amount of parameters, hard to train

• Decoder-only: GPT
• Next token prediction
• Full rank attention matrix
• Understanding and generation
• High zero-shot/few-shot generalization
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Llama 3: Openly Available LLM to Date
• Llama 3 uses a tokenizer with a vocabulary of 128K tokens that encodes 

language much more efficiently, which leads to substantially improved 
model performance.

• Llama 3 is pretrained on over 15T tokens that were all collected from 
publicly available sources.

• The training runs on two custom-built 24K GPU clusters.

• Instruction fine-tuning: post-training is a combination of supervised fine-
tuning (SFT), rejection sampling, proximal policy optimization (PPO), and 
direct preference optimization (DPO).
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https://github.com/meta-llama/llama3

https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/


The Safety Measures of LLM (Llama) 
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Instruction-fine-tuned models have been red-teamed (tested) for safety through internal and external efforts. 
The red teaming approach leverages human experts and automation methods to generate adversarial prompts that 
try to elicit problematic responses.



References

• https://cs231n.stanford.edu/slides/2024/lecture_7.pdf

• https://cs231n.stanford.edu/slides/2024/lecture_8.pdf

• On the Opportunities and Risks of Foundation Models 

• A Comprehensive Survey on Pretrained Foundation Models: A 
History from BERT to ChatGPT 
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